
Discussion	Section	Week	9
CS	145



Reminder

• HW	4
• Due	on	12/01	(Fri)	11:59	PM	(Today!)

• Final	Project	Report
• Due	on	12/10	(Sun)	11:59	PM
• Brief	submission	guidelines	are	already	on	CCLE
• More	detailed	guidelines	will	be	announced	by	this	week

• E.g.,	script	format	and	essential	contents



Overview

• Frequent	Pattern	Mining
• Apriori Algorithm
• FP	Growth	Algorithm
• Pattern	Evaluation	Methods

• Sequential	Pattern	Mining
• GSP
• SPADE
• PrefixSpan

• Dynamic	Time	Warping



Apriori Algorithm



Apriori Algorithm

• The	Apriori Algorithm	is	an	influential	algorithm	for	mining	frequent	
itemsets for	boolean association	rules.	

• Given	a	set	of	transactions	containing	items,	find	frequent	itemsets
which	occur	together	in	a	transaction.

• Key	Concepts:	
• Frequent	Itemsets:	The	sets	of	item	which	has	minimum	support	(denoted	by	
Li for	ith-Itemset).

• Apriori Property:	Any	subset	of	frequent	itemset	must	be	frequent.
• Join	Operation:	To	find	Lk ,	a	set	of	candidate	k-itemsets is	generated	by	
joining	Lk-1 with	itself.



Apriori Algorithm

• Find	the	frequent	itemsets:	the	sets	of	items	that	have	minimum	
support

• A	subset	of	a	frequent	itemset	must	also	be	a	frequent	itemset,	i.e.	if	{AB}	is	a	
frequent	itemset,	both	{A}	and	{B}	should	be	frequent	itemsets

• Iteratively	find	frequent	itemsets with	cardinality	from	1	to	k	(k-itemset)

• Use	the	frequent	itemsets to	generate	association	rules



Apriori Algorithm:	Pseudo	code

• Join	Step:	Ck is	generated	by	
joining	Lk-1 with	itself

• Prune	Step:	Any	(k-1)-itemset	
that	is	not	frequent	cannot	
be	a	subset	of	a	frequent	k-
itemset

• Pseudo-code



Apriori Algorithm:	Example

• Consider	a	database	D,	
consisting	of	9	transactions

• Suppose	min.	support	count	
required	is	2	

• We	have	to	find	out	the	
frequent	itemset	using	
Apriori algorithm.



Generating	1-itemset	Frequent	Pattern

• The	set	of	frequent	1-itemsets,	L1 ,	consists	of	the	candidate	1-
itemsets satisfying	minimum	support.

• In	the	first	iteration	of	the	algorithm,	each	item	is	a	member	of	the	
set	of	candidate



Generating	2-itemset	Frequent	Pattern

• To	discover	the	set	of	frequent	2-itemsets,	L2 ,	the	algorithm	uses							
L1 Join	L1 to	generate	a	candidate	set	of	2-itemsets,	C2

• Next,	the	transactions	in	D	are	scanned	and	the	support	count	for	
each	candidate	itemset	in	C2 is	accumulated	

• The	set	of	frequent	2-itemsets,	L2	,	is	then	determined,	consisting	of	
those	candidate	2-itemsets	in	C2 having	minimum	support.

• Note:	We	haven’t	used	Apriori Property	yet.



Generating	2-itemset	Frequent	Pattern



Generating	3-itemset	Frequent	Pattern

• The	generation	of	the	set	of	candidate	3-itemsets,	C3 ,	involves	use	of	
the	Apriori Property

• In	order	to	find	C3,	we	compute	L2 Join	L2
• C3 =	L2 Join	L2	=	{{I1,	I2,	I3},	{I1,	I2,	I5},	{I1,	I3,	I5},	{I2,	I3,	I4},	{I2,	I3,	I5},	
{I2,	I4,	I5}}

• Now,	Join	step	is	complete	and	Prune	step	will	be	used	to	reduce	the	
size	of	C3.	Prune	step	helps	to	avoid	heavy	computation	due	to	large	Ck



Generating	3-itemset	Frequent	Pattern

• Based	on	the	Apriori property	that	all	subsets	of	a	frequent	itemset	must	also	be	
frequent,	we	can	determine	that	last	four	candidates	cannot	possibly	be	
frequent.	How?

• For	example,	lets	take	{I1,	I2,	I3}.	The	2-item	subsets	of	it	are	{I1,	I2},	{I1,	I3}	&	{I2,	
I3}.	Since	all	2-item	subsets	of	{I1,	I2,	I3}	are	members	of	L2,	We	will	keep	{I1,	I2,	
I3}	in	C3.

• Lets	take	another	example	of	{I2,	I3,	I5}	which	shows	how	the	pruning	is	
performed.	The	2-item	subsets	are	{I2,	I3},	{I2,	I5}	&	{I3,I5}.

• BUT,	{I3,	I5}	is	not	a	member	of	L2 and	hence	it	is	not	frequent	violating	Apriori
Property.	Thus	We	will	have	to	remove	{I2,	I3,	I5}	from	C3.

• Therefore,	C3 =	{{I1,	I2,	I3},	{I1,	I2,	I5}}	after	checking	for	all	members	of	result	of	
Join	operation	for	Pruning.

• Now,	the	transactions	in	D	are	scanned	in	order	to	determine	L3,	consisting	of	those	candidates	3-itemsets	in	C3 having	minimum	support.



Generating	4-itemset	Frequent	Pattern

• The	algorithm	uses	L3	Join	L3	to	generate	a	candidate	set	of	4-
itemsets,	C4.	Although	the	join	results	in	{{I1,	I2,	I3,	I5}},	this	itemset	
is	pruned	since	its	subset	{{I2,	I3,	I5}}	is	not	frequent.

• Thus,	C4	=	φ	,	and	algorithm	terminates,	having	found	all	of	the	
frequent	items.	

• This	completes	our	Apriori Algorithm.
• Final	set	of	frequent	patterns:

• L	=	{{I1},	{I2},	{I3},	{I4},	{I5},	{I1,I2},	{I1,I3},	{I1,I5},	{I2,I3},	{I2,I4},	{I2,I5},	
{I1,I2,I3},	{I1,I2,I5}}



FP	Growth	Algorithm



FP	Growth	Algorithm

• Allows	frequent	itemset	discovery	without	candidate	itemset	
generation.	

• Two	step	approach:
• Step	1:	Build	a	compact	data	structure	called	the	FP-tree

• Built	using	2	passes	over	the	data-set.

• Step	2:	Extracts	frequent	itemsets directly	from	the	FP-tree
• Traversal	through	FP-Tree



Core	Data	Structure:	FP-Tree

• Nodes	correspond	to	items	and	have	a	counter
• FP-Growth	reads	1	transaction	at	a	time	and	maps	it	to	a	path
• Fixed	order	is	used,	so	paths	can	overlap	when	transactions	share	
items	(when	they	have	the	same	prefix	)

• In	this	case,	counters	are	incremented	

• Pointers	are	maintained	between	nodes	containing	the	same	item,	
creating	singly	linked	lists	(dotted	lines)

• The	more	paths	that	overlap,	the	higher	the	compression.	
• Frequent	itemsets are	extracted	from	the	FP-Tree.



Example	Dataset



FP-Tree	Construction	

• FP-Tree	is	constructed	using	2	passes	over	the	data-set

• Pass	1:	
• Scan	data	and	find	support	for	each	item.
• Discard	infrequent	items.
• Sort	frequent	items	in	decreasing	order	based	on	their	support.
• For	our	example:	a,	b,	c,	d,	e
• Use	this	order	when	building	the	FP-Tree,	so	common	prefixes	can	be	shared.



FP-Tree	Construction

• Pass	2:	construct	the	FP-Tree	
• Read	transaction	1:	{a,	b}

• Create	2	nodes	a	and	b	and	the	path	null	→	a	→	b.	Set	counts	of	a	and	b	to	1.
• Read	transaction	2:	{b,	c,	d}

• Create	3	nodes	for	b,	c	and	d	and	the	path	null	→	b	→	c	→	d.	Set	counts	to	1.
• Note	that	although	transaction	1	and	2	share	b,	the	paths	are	disjoint	as	they	don't	
share	a	common	prefix.	Add	the	link	between	the	b’s.

• Read	transaction	3:	{a,	c,	d,	e}
• It	shares	common	prefix	item	a	with	transaction	1	so	the	path	for	transaction	1	and	3	
will	overlap	and	the	frequency	count	for	node	a	will	be	incremented	by	1.	Add	links	
between	the	c's	and	d’s.	

• Continue	until	all	transactions	are	mapped	to	a	path	in	the	FP-tree







FP-Tree	size

• The	FP-Tree	usually	has	a	smaller	size	than	the	uncompressed	data	–
typically	many	transactions	share	items	(and	hence	prefixes).

• Best	case	scenario:	all	transactions	contain	the	same	set	of	items.
• 1	path	in	the	FP-tree

• Worst	case	scenario:	every	transaction	has	a	unique	set	of	items	(no	
items	in	common)

• Size	of	the	FP-tree	is	at	least	as	large	as	the	original	data.
• Storage	requirements	for	the	FP-tree	are	higher	– need	to	store	the	pointers	
between	the	nodes	and	the	counters.



Frequent	Itemset	Generation
• FP-Growth	extracts	frequent	itemsets from	the	FP-tree.
• Bottom-up	algorithm	– from	the	leaves	towards	the	root

• Divide	and	conquer:	first	look	for	frequent	itemsets ending	in	e,	then	de,	etc…	
then	d,	then	cd,	etc…

• First,	extract	prefix	path	sub-trees	ending	in	an	item(set)



Frequent	Itemset	Generation

• Each	prefix	path	sub-tree	is	processed	recursively	to	extract	the	
frequent	itemsets.	Solutions	are	then	merged.

• E.g.	the	prefix	path	sub-tree	for	e	will	be	used	to	extract	frequent	itemsets
ending	in	e,	then	in	de,	ce,	be	and	ae,	then	in	cde,	bde,	cde,	etc.

• Divide	and	conquer	approach



Frequent	Itemset	Generation	Example

• Let	minSup=	2	and	extract	all	frequent	itemsets
containing	e.

• Obtain	the	prefix	path	sub-tree	for	e:

• Check	if	e	is	a	frequent	item	by	adding	the	counts	
along	the	linked	list	(dotted	line).	If	so,	extract	it.

• Yes,	count	is	3	so	{e}	is	extracted	as	a	frequent	itemset.

• As	e	is	frequent,	find	frequent	itemsets ending	in	e,	
i.e.	de,	ce,	be	and	ae.

• decompose	the	problem	recursively.
• To	do	this,	we	must	first	obtain	the	conditional	FP-tree	for	e.



Conditional	FP-Tree

• The	FP-Tree	that	would	be	built	if	we	only	consider	transactions	
containing	a	particular	itemset	(and	then	removing	that	itemset	from	
all	transactions).

• Example:	FP-Tree	conditional	on	e.	(find	F-list	and	header	table	again)



Conditional	FP-Tree

• Use	the	the conditional	FP-tree	for	e	to	find	frequent	itemsets ending	
in	de,	ce and	ae

• Note	that	be	is	not	considered	as	b	is	not	in	the	conditional	FP-tree	for	e.
• For	each	of	them	(e.g.	de),	find	the	prefix	paths	from	the	conditional	tree	for	
e,	extract	frequent	itemsets,	generate	conditional	FP-tree,	etc...	(recursive)

• Example:	e	→	de	→	ade ({d,	e},	{a,	d,	e}	are	found	to	be	frequent)



Conditional	FP-Tree

• Use	the	the conditional	FP-tree	for	e	to	find	frequent	itemsets ending	
in	de,	ce and	ae

• Example:	e	→	ce ({c,	e}	is	found	to	be	frequent)

• etc…	(ae	too,	then	do	the	whole	thing	for	b,...	etc)	



Result

• Frequent	itemsets found	(ordered	by	suffix	and	order	in	which	they	
are	found):



Discussion

• Advantages	of	FP-Growth
• only	2	passes	over	data-set	
• Compresses	data-set
• no	candidate	generation
• much	faster	than	Apriori

• Disadvantages	of	FP-Growth
• FP-Tree	may	not	fit	in	memory
• FP-Tree	is	expensive	to	build

• Trade-off:	takes	time	to	build,	but	once	it	is	built,	frequent	itemsets are	read	off	easily.
• Time	is	wasted	(especially	if	support	threshold	is	high),	as	the	only	pruning	that	can	be	
done	is	on	single	items.

• support	can	only	be	calculated	once	the	entire	data-set	is	added	to	the	FP-Tree.



Pattern	Evaluation	Methods





















Sequential	Pattern	Mining



Sequence	Data	Base

• A	sequence	database	consists	of	ordered	elements	or	events

A sequence database
SID sequences
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

A transaction database
TID itemsets
10 a, b, d

20 a, c, d

30 a, d, e

40 b, e, f



Sequence

• Event	/	element
• A	non-empty	set	of	items,	e.g.,	e=(ab)

• Sequence
• An	ordered	list	of	events,	e.g.,	𝑠 =	<	e1 e2 …	el >

• Length	of	a	sequence
• The	number	of	instances	of	items	in	a	sequence
• The	length	of	<	(ef)	(ab)	(df)	c	b	>	is	8	(Not	5!)



Subsequence	vs.	Super	sequence

• Given	two	sequences	α=<	a1 a2 …	an >	and	β=<	b1 b2 …	bm >

• Subsequence
• α	is	called	a	subsequence	of	β,	denoted	as	α⊆ β
• If	there	exist	integers	1≤	j1 <	j2 <…<	jn ≤m	such	that	a1⊆ bj1,	a2⊆ bj2,…,	an⊆ bjn

• Super	sequence
• β	is	a	super	sequence	of	α

• Example:
• <a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>



Sequential	Pattern	Mining

• Given	a	set	of	sequences	and	support	threshold,	find	the	complete	
set	of	frequent subsequences

A sequence database
A sequence : < (ef) (ab)  (df) c b >

An	element	may	contain	a	set	of	items.
Items	within	an	element	are	unordered
and	we	list	them	alphabetically.

<
<a(bc)dc> is a subsequence 
of <a(abc)(ac)d(cf)>

Given support threshold min_sup =2, <(ab)c> is a sequential pattern

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>



Methods	for	Sequential	Pattern	Mining

• Apriori-based	Approaches
• GSP	– Generalized	Sequential	Pattern	Mining
• SPADE	– Sequential	PAttern Discovery	using	Equivalent	class

• Pattern-Growth-based	Approach
• PrefixSpan



Generalized	Sequential	
Pattern	Mining (GSP)



GSP	– Generalized	Sequential	Pattern	Mining

• GSP	(Generalized	Sequential	Patterns)	
• Multi-pass	algorithm
• Candidate	generate	and	test	approach

• Strength
• Pruning	candidates	by	Apriori

• Weakness
• Generate	lots	of	candidates



The	Apriori Property	of	Sequential	Patterns

• A	basic	property:	Apriori (Agrawal	&	Sirkant’94)	
• If	a	sequence	S is	not	frequent,	
then	none	of	the	super-sequences	of	S is	frequent

• E.g,	<hb>	is	infrequent			so	do	<hab>	and	<(ah)b>

<a(bd)bcb(ade)>50
<(be)(ce)d>40

<(ah)(bf)abf>30
<(bf)(ce)b(fg)>20
<(bd)cb(ac)>10

SequenceSeq. ID

Given support threshold
min_sup =2 



GSP	Algorithm

• Initially,	every	item	in	DB	is	a	candidate	of	length-1

• For	each	level	(i.e.,	sequences	of	length-k)	do
• Scan	database	to	collect	support	count	for	each	candidate	sequence
• Generate	candidate	length-(k+1)	sequences	from	length-k	frequent	
sequences using	Apriori

• Repeat	until	no	frequent	sequence	or	no	candidate	can	be	found



Finding	Length-1	Sequential	Patterns

• Initial	candidates:	
• <a>,	<b>,	<c>,	<d>,	<e>,	<f>,	<g>,	<h>

• Scan	database	once,	count	support	for	candidates

<a(bd)bcb(ade)>50
<(be)(ce)d>40

<(ah)(bf)abf>30
<(bf)(ce)b(fg)>20
<(bd)cb(ac)>10

SequenceSeq. ID
min_sup =2 

Cand Sup
<a> 3
<b> 5
<c> 4
<d> 3
<e> 3
<f> 2
<g> 1
<h> 1



Generating	Length-2	Candidates

<a> <b> <c> <d> <e> <f>
<a> <aa> <ab> <ac> <ad> <ae> <af>
<b> <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <b> <c> <d> <e> <f>
<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>
<b> <(bc)> <(bd)> <(be)> <(bf)>
<c> <(cd)> <(ce)> <(cf)>
<d> <(de)> <(df)>
<e> <(ef)>
<f>

51 length-2
Candidates

Without Apriori 
property,
8*8+8*7/2=92 
candidates
Apriori prunes 

44.57% candidates



How	to	Generate	Candidate	in	General

• From	𝐿𝑘−1 to	𝐶𝑘
• Step	1:	Join

• 𝑠1 𝑎𝑛𝑑 𝑠2 can	join	
if	dropping	first	item	in	𝑠1 is	the	same	as	dropping	the	last	item	in	𝑠2

• Example:
• <(12)3>	join	<(2)34>	=	<(12)34>
• <(12)3>	join	<(2)(34)>	=	<(12)(34)>

• Step	2:	Pruning
• Check	all	length	k-1 subsequence	of	a	candidate	is	contained	in	𝐿𝑘−1



GSP	Example

• Initial	candidates:	
• <a>,	<b>,	<c>,	<d>,	<e>,	<f>,	<g>,	<h>	

• Scan	database	once,	count	support	for	candidates

<(dgh)(bf)(agh)>4
<(abf)>3

<(abf)e>2
<(cd)(abc)(abf)(acdf)>1

SequenceSeq. ID
min_sup =2 

Cand Sup
<a> 4
<b> 4
<f> 4
<d> 2
<c> 1
<e> 1
<g> 1
<h> 1



GSP	Example	(Cont’d)

• C2:	Length-2	candidates
• 4	supports:	<(bf)>
• 3	supports:	<(ab)>	<(af)>
• 2	supports:	<ba>	<da>	<db>	<df>	<fa>
• 1	support:	<aa>	<ab>	<ad>	<af>	<ba>	<bb>	<bd>	<bf>	<da>	<db><dd>
<df>	<fa>	<fb>	<fd>	<ff>	<(ad)>	<(bd)>	<(bf)>	<(df)>	

• L2:	Length-2	frequent	sequences	
• <ba>	<da>	<db>	<df>	<fa>	<(ab)>	<(af)>	<(bf)>

Cand Sup
<a> 4
<b> 4
<f> 4
<d> 2

<(dgh)(bf)(agh)>4
<(abf)>3

<(abf)e>2
<(cd)(abc)(abf)(acdf)>1

SequenceSeq. ID
min_sup =2 



GSP	Example	(Cont’d)

• L2:	Length-2	frequent	sequences	
• <ba>	<da>	<db>	<df>	<fa>	<(ab)>	<(af)>	<(bf)>

• C3:	Length-3	candidates	generated	by	join	
• <ba>	and	<(ab)>	=	<b(ab)>	{1}
• <ba>	and	<(af)>	=	<b(af)>	{1}
• <da>	and	<(ab)>	=	<d(ab)>	{1}
• <da>	and	<(af)>	=	<d(af)>	{1}
• <db>	and	<(bf)>	=	<d(bf)>	{1,	4}
• <db>	and	<ba>	=	<dba>	{1,	4}
• <df>	and	<fa>	=	<dfa>	{1,	4}
• <fa>	and	<(ab)>	=	<f(ab)>	{}
• <fa>	and	<(af)>	=	<f(af)>	{1}
• <(ab)>	and	<(bf)>	=	<(abf)>	{1,2,3}
• <(ab)>	and	<ba>	=	<(ab)a>	{1}
• <(af)>	and	<fa>	=	<(af)a)	{1}
• <(bf)>	and	<fa>	=	<(bf)a>	{1,	4}	

<(dgh)(bf)(agh)>4
<(abf)>3

<(abf)e>2
<(cd)(abc)(abf)(acdf)>1

SequenceSeq. ID
min_sup =2 

• L3:	Length-3	frequent	sequences	
• <dba>	<dfa>	<(abf)>	<(bf)a>	<d(bf)>	

• C4:	Length-4	candidates	generated	by	join	
• <d(bf)>	and	<(bf)a>	=	<d(bf)a>	{1,	4}
• <(abf)>	and	<(bf)a>	=	<(abf)a>	{1}	

• L4:	Length-4	frequent	sequences	
• <d(bf)a>



Short	Summary	of	GSP

• Benefits	from	the	Apriori pruning
• Reduces	search	space

• Bottlenecks
• Scans	the	database	multiple	times	
• Generates	a	huge	set	of	candidate	sequences



The	SPADE	Algorithm	



The	SPADE	Algorithm

• SPADE	– Sequential	PAttern Discovery	using	Equivalent	class
• A	vertical	format	sequential	pattern	mining	method
• A	sequence	database	is	mapped	to	a	large	set	of	

• Item:	<sequence_ID (SID),	event_ID (EID)>

• Mapping	from	horizontal	to	vertical	format	requires	only	one	scan	
• Support	of	k-sequences	can	be	determined	by	joining	the	ID	lists
of	(k-1)	sequences	



The	SPADE	Algorithm	(Cont’d)



Short	Summary	of	SPADE

• Benefits:
• Reduces	scans	of	the	sequence	database	

• Bottlenecks:
• But	large	set	of	candidates	are	still	generated	



Bottlenecks	of	Candidate	Generate-and-test

• A	huge	set	of	candidates	generated.
• Especially	2-item	candidate	sequence.

• Multiple	Scans	of	database	in	mining.
• The	length	of	each	candidate	grows	by	one	at	each	database	scan.

• Inefficient	for	mining	long	sequential	patterns.
• A	long	pattern	grow	up	from	short	patterns

• An	exponential	number	of	short	candidates



PrefixSpan



PrefixSpan

• PrefixSpan – Prefix-Projected	Sequential	Pattern	Growth	

• Pattern	Growth	– does	not	require	candidate	generation	
• Constructs	FP-tree
• Projected	databases	associated	with	each	frequent	item	are
generated	from	FP-tree	

• Builds	prefix	patterns	which	it	concatenates	with	suffix	patterns
to	find	frequent	patterns	



Prefix	and	Suffix

• <a>,	<aa>,	<a(ab)>	and	<a(abc)>	are	prefixes of	sequence	<a(abc)(ac)d(cf)>
• Note	<a(ac)>	is	not	a	prefix	of	<a(abc)(ac)d(cf)>

• Given	the	sequence	<a(abc)(ac)d(cf)>

Prefix Suffix

<a> <(abc)(ac)d(cf)>
<aa> <(_bc)(ac)d(cf)>
<ab> <(_c)(ac)d(cf)>

(_bc)	means:	the	last	element	in	the	prefix	together	with	(bc)	
form	one	element



Prefix-based	Projection

• Given	a	sequence,	𝛼,	let	𝛽 be	a	subsequence	of	𝛼,	and	𝛼ʹ	is	be	
subsequence	of	𝛼

• 𝛼ʹ	is	called	a	projection	of	𝛼w.r.t.	prefix	𝛽,	if	only	and	only	if	
• 𝛼ʹ	has	prefix	𝛽,	and	
• 𝛼ʹ	is	the	maximum	subsequence of	𝛼 with	prefix	𝛽

• Example
• <ad(cf)>	is	a	projection	of	w.r.t.	prefix	of
<a(abc)(ac)d(cf)>	w.r.t.	the	prefix	<ad>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>



Projected	(Suffix)	Database

• The	collection	of	suffixes of	projections	of	sequences	in	the	database	
w.r.t.	the	prefix	sequential	pattern	𝛼

• Example
• <a>-projected	database

• <(abc)(ac)d(cf)>
• <(_d)c(bc)(ae)>
• <(_b)(df)cb>
• <(_f)cbc>

• <ab>-projected	database
• <(_c)(ac)d(cf)>
• <(_c)(ae)>
• <c>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>



Mining	Sequential	Patterns	by	Prefix	Projections

• Step	1:	find	length-1	sequential	patterns
• <a>,	<b>,	<c>,	<d>,	<e>,	<f>

• Step	2:	divide	search	space.	The	complete	set	of	sequence	patterns
can	be	partitioned	into	6	subsets:

• The	ones	having	prefix	<a>;
• The	ones	having	prefix	<b>;
• …
• The	ones	having	prefix	<f>

• Step	3:	mine	each	subset	recursively	
via	corresponding	projected	databases

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>



Finding	Sequence	Patterns	with	Prefix	<a>

• Only	need	to	consider	projections	w.r.t.	<a>
• <a>-projected	database:	
<(abc)(ac)d(cf)>	<(_d)c(bc)(ae)>	<(_b)(df)cb>	<(_f)cbc>

• Find	all	the	length-2	sequence	patterns.	
Having	prefix	<a>:	<aa>	<ab>	<(ab)>	<ac>	<ad>	<af>

• Further	partition	into	6	subsets
• Having	prefix	<aa>;
• …
• Having	prefix	<af>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>



Why	are	those	6	subsets?

• By	scanning	the	<a>-projected	database	once,	its	locally	frequent	
items	are	identified	as	

• a:2,	b:4,	_b:	2,	c:	4,	d:	2,	and	f:	2

• Thus,	all	the	length-2	sequential	patterns	prefixed	with	<a>	are	found,	
and	they	are:

• <aa>:	2,	<ab>:	4,	<(ab)>:	2,	<ac>:	4,	<ad>:	2,	and	<af>:2



Completeness	of	PrefixSpan
SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

SDB
Length-1 sequential patterns
<a>, <b>, <c>, <d>, <e>, <f>

<a>-projected database
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

Having prefix <a>

Having prefix <aa>

<aa>-proj. db … <af>-proj. db

Having prefix <af>

<b>-projected database …
Having prefix <b>

Having prefix <c>, …, <f>

… …



Short	Summary	of	PrefixSpan

• No	candidate	sequence	needs	to	be	generated

• Projected	databases	keep	shrinking

• Major	cost	of	PrefixSpan:	constructing	projected	databases	
• Can	be	improved	by	pseudo-projections



Dynamic	Time	Warping	
(DTW)













DTW	Example

• Sequence	1:	1	1	2	3	2	0
• Sequence	2:	0	1	1	2	3	2	1
• 𝑐 𝑥, 𝑦 = 𝑥 − 𝑦 0

1 7 7 3 6 2 2

2 7 7 2 2 1 5

3 6 6 2 1 2 11

2 2 2 1 2 2 6

1 1 1 2 6 7 8

1 1 1 2 6 7 8

0 1 2 6 15 19 19

1 1 2 3 2 0


