Discussion Section Week 9

CS 145

Reminder

* HW 4
 Due on 12/01 (Fri) 11:59 PM (Today!)

* Final Project Report
* Dueon 12/10 (Sun) 11:59 PM
* Brief submission guidelinesare already on CCLE

* More detailed guidelines will be announced by this week
* E.g., script formatand essential contents

Overview

* Frequent Pattern Mining
e Apriori Algorithm
* FP Growth Algorithm
e Pattern Evaluation Methods

* Sequential Pattern Mining
* GSP
* SPADE
* PrefixSpan

* Dynamic Time Warping

Apriori Algorithm

Apriori Algorithm

* The Apriori Algorithm is an influential algorithm for mining frequent
itemsets for boolean association rules.

* Given a set of transactions containing items, find frequentitemsets
which occur together in a transaction.

* Key Concepts:

* Frequent Itemsets: The sets of item which has minimum support (denoted by
L, for it-Itemset).

* Apriori Property: Any subset of frequent itemset must be frequent.

* Join Operation: To find L, , a set of candidate k-itemsets is generated by
joiningL, ; with itself.

Apriori Algorithm

* Find the frequentitemsets: the sets of items that have minimum
support

* Asubset of a frequentitemset must also be a frequent itemset, i.e. if {AB} is a
frequentitemset, both {A}and {B} should be frequent itemsets

* lteratively find frequent itemsets with cardinality from 1 to k (k-itemset)

e Use the frequentitemsets to generate association rules

Apriori Algorithm: Pseudo code

C,: Candidate itemsets of size k

* Join Step: C, is generated by L, : frequent itemsets of size k

joining L,_, with itself
_ L, = {frequent items};
* Prune Step: Any (k—l)-ltemset for (k = 2; L, , 1=3; k++) do begin

that is not frequentcannot C, = candidates generated from L, ;;
be a subset of a frequent k- for each transaction t in database do
itemset increment the count of all candidates in C), that are

e Pseudo-code contained m ¢
L, = candidates in C, with min_support
end

return U, L;

Apriori Algorithm: Example

. TID List of Items
e Consider a database D, 7100 1 12 15
consisting of 9 transactions 7100 _—
* Suppose min. support count T100 12,13
required is 2 7100 112 14
* We have to find out the T100 1,13
frequentitemset using
L) T100 12,13
Apriori algorithm.
T100 11, 13
T100 1,12 ,13, 15
T100 1,12, 13

Generating 1-itemset Frequent Pattern

. o Itemset | Sup.Count Compare candidate ltemset | Sup.Count
can bior s rt count with
count of each {11} 6 muizfr:um Z::pz:-t {1} |6
candidate {12} 7 count {12} 7

{13} 6 (13} |6

{14} 2 (14} |2

{15} 2 (15} |2

* The set of frequent 1-itemsets, L, , consists of the candidate 1-
itemsets satisfying minimum support.

* In the first iteration of the algorithm, each item is a member of the
set of candidate

Generating 2-itemset Frequent Pattern

* To discover the set of frequent 2-itemsets, L, , the algorithm uses
L, Join L, to generate a candidate set of 2-itemsets, C,

* Next, the transactions in D are scanned and the support count for
each candidate itemset in C, is accumulated

* The set of frequent 2-itemsets, L,, is then determined, consisting of
those candidate 2-itemsets in C, having minimum support.

* Note: We haven’t used Apriori Property yet.

Generating 2-itemset Frequent Pattern

Itemset Itemset | Sup. ltemset | Sup
Generate Compare
C, {1, 12} Scan D for Count | candidate Count
candidates count of support
fromL, {1, 13} each {1, 12} 4 count with {1, 12} 4
{11, 14} candidate | {l1, I3} 4 minimum {11, 13} 4
| support i,15 | 2
{11, 15} {11, 14} 1 count i
{12, 13} {11, 15} 2 {12, 13} 4
{12, 14} 12,13} | 4 {1214y | 2
{12, 15} 12,14 | 2 12,15}) 2
{3, 14) 12,18 | 2 L,
{3, 15} {13, 14} 0
14, |
{4, 15) {13, 15} 1
C, {14, 15} 0

Generating 3-itemset Frequent Pattern

Compare
Scan D for . t Scan D for | Itemset Sup. | candidate ltemset | Sup
count of emse count of support
oach each Count count with Count
candidate {I1, 12, 13} candidate | {I1, 12, 13} 2 min support | {|1, |12, I3} 2
i1, 1) a,02,15) 2 [T (1,1215] 2
C, C, L,

* The generation of the set of candidate 3-itemsets, C;, involves use of
the Apriori Property

* In order to find C;, we compute L, Join L,

* C;=L,Join L,={{I1, 12, 13}, {I1, 12, 15}, {I1, 13, 15}, {12, 13, 14}, {12, 13, I5},
{12, 14, I5}}

* Now, Join step is complete and Prune step will be used to reduce the
size of C;. Prune step helps to avoid heavy computation due to large C,

Generating 3-itemset Frequent Pattern

Based on the Apriori property that all subsets of a frequent itemset must also be
frequent, we can determine that last four candidates cannot possibly be
frequent. How?

For example, lets take {I1, 12, I3}. The 2-item subsets of it are {I1, 12}, {I1, 13} & {12,
Bl._Silgce all 2-item subsets of {I1, 12, 13} are members of L,, We will keep {I1, 12,
in Cs.

Lets take another example of {12, I3, I5} which shows how the pruningis
performed. The 2-item subsets are {12, 13}, {12, I5} & {13,I5}.

BUT, {I3, 15} is not a member of L, and hence it is not frequent violating Apriori
Property. Thus We will have to remove {12, I3, I5} from C;.

Therefore, C; = {{I1, 12, 13}, {I1, 12, I5}} after checking for all members of result of
Join operation for Pruning.

Now, the transactionsin D are scanned in order to determine L;, consisting of
those candidates 3-itemsets in C; having minimum support.

Generating 4-itemset Frequent Pattern

* The algorithm uses L3 Join L3 to generate a candidate set of 4-
itemsets, C4. Although the join results in {{l1, 12, 13, 15}}, this itemset
is pruned since its subset {{I2, I3, I5}} is not frequent.

* Thus, C4 = ¢, and algorithm terminates, having found all of the
frequentitems.

* This completes our Apriori Algorithm.

* Final set of frequent patterns:

o L={{11}, {12}, {13}, {14}, {I5}, {11,12}, {I1,13}, {I1,I5}, {12,13}, {12,14}, {I2,I5},
{11,12,13}, {I1,12,I15}}

FP Growth Algorithm

FP Growth Algorithm

* Allows frequentitemset discovery without candidate itemset
generation.

* Two step approach:

e Step 1: Build a compact data structure called the FP-tree
* Built using 2 passes over the data-set.

 Step 2: Extracts frequent itemsets directly from the FP-tree
* Traversal through FP-Tree

Core Data Structure: FP-Tree

* Nodes correspond to items and have a counter
* FP-Growth reads 1 transaction at a time and maps it to a path

* Fixed order is used, so paths can overlap when transactions share
items (when they have the same prefix)
* |n this case, counters are incremented

* Pointers are maintained between nodes containing the same item,
creating singly linked lists (dotted lines)

* The more paths that overlap, the higher the compression.
* Frequent itemsets are extracted from the FP-Tree.

Example Dataset

ltems

- -
SO®NOORWON 2T

{a,b}
Ib,c,d}
{a,c,d,e}
{a.d e}
{a,b,c}
{a,b,c,d}
{a}
fa,b,c}
{a,b,d}
{b,c.e}

~-list = a-b-c-d-e

Header table

ltem

Pointer

a

L O O O

FP-Tree Construction

* FP-Tree is constructed using 2 passes over the data-set

* Pass 1:
* Scan data and find support for each item.
* Discard infrequent items.
* Sort frequent items in decreasing order based on their support.
 Forourexample:a, b, c, d, e
* Use this order when buildingthe FP-Tree, so common prefixes can be shared.

FP-Tree Construction

e Pass 2: construct the FP-Tree

Read transaction 1: {a, b}
* Create 2 nodesaand b and the pathnull > a - b. Set counts of aand b to 1.

Read transaction 2: {b, c, d}
* Create 3 nodesforb, candd andthe path null > b - ¢ - d. Set countsto 1.
* Note that although transaction 1 and 2 shareb, the pathsare disjointas they don't

sharea common prefix. Add the link between the b’s.
Read transaction 3: {3, c, d, e}

* It sharescommon prefixitem a with transaction 1 so the path fortransaction1 and3
will overlap and the frequency count for node a will be incremented by 1. Add links
between the c's and d’s.

* Continue until all transactions are mapped to a path in the FP-tree

Transaction

Data Set

Items

{a,b}

{b,c,d}

{a,c,d,e}

{a,d,e}

{a,b,c}

{a,b,c,d}

{a}

{a,b,c}

{a,b,d}

q
— —
o|©|®|(Nlo|o|s|win|= 5

{b,c,e}

null

a:1

b:1
d:1
(i) After reading TID=1 (ii) After reading TID=2

(iii) After reading TID=3

(iv) After reading TID=10

ltems

- -
DO@NOGORON 2T

{a,b}
{b,c,d}
{a,c,d,e}
{a.d e}
{a,b,c}
{a,b,c,d}
{a}
{a,b.c}
{a,b,d}
{b,ce}

Header table

_ ~-list = a-b-c-d-e
Transaction

Database

null

min_support =2

- -
- W m m Em w

ltem

Pointer

a

D o O T

T ’ Pointers are used to assist
frequent itemset generation

FP-Tree size

* The FP-Tree usually has a smaller size than the uncompressed data —
typically many transactions share items (and hence prefixes).

* Best case scenario: all transactions contain the same set of items.
* 1 pathin the FP-tree

* Worst case scenario: every transaction has a unique set of items (no
items in common)
 Size of the FP-tree is at least as large as the original data.

* Storage requirements for the FP-tree are higher — need to store the pointers
between the nodes and the counters.

Frequent Itemset Generation

* FP-Growth extracts frequentitemsets from the FP-tree.

e Bottom-up algorithm — from the leaves towards the root
* Divide and conquer:first look for frequent itemsets endingin e, then de, etc...
then d, then cd, etc...

* First, extract prefix path sub-trees ending in an item(set)

055 . 4\ 1
c:3 /\'-(1 d:1 /f""\d‘1 \
wd " T I
T Complete FP-tree " -
— Example: prefix path - /\') VAN
sub-trees .]/,\}/_’-’\ . [b2 A
L7 e b5

Frequent Itemset Generation

* Each prefix path sub-tree is processed recursively to extract the
frequentitemsets. Solutions are then merged.

* E.g. the prefix path sub-tree for e will be used to extract frequent itemsets
endingin e, then inde, ce, be and ae, thenin cde, bde, cde, etc.

* Divide and conquer approach

e de cde ...
§ bde ...

ade
ce bce ..

i ace

be —» abe

de

d.. Prefix path sub-tree ending in e.

Frequent Itemset Generation Example

* Let minSup= 2 and extract all frequentitemsets
containing e.

* Obtain the prefix path sub-tree for e:

* Checkif eis a frequentitem by adding the counts
along the linked list (dotted line). If so, extract it.

* Yes, countis 3 so {e}is extracted as a frequent itemset.

* As e is frequent, find frequentitemsets ending in e,
i.e. de, ce, be and ae.
 decompose the problem recursively.
* To do this, we must first obtain the conditional FP-tree for e.

Conditional FP-Tree

* The FP-Tree that would be built if we only consider transactions

containing a particular itemset (and then removing that itemset from
all transactions).

* Example: FP-Tree conditional on e. (find F-list and header table again)

TID ltems

[]

| Satlad)

—{rere—
{a,c,d,8}
{a,d,®}
—tesbe—

[al
)

—t{esbe—
—{esbre—
{b,c.§}

gkl Al

—
o

Conditional FP-Tree

* Use the the conditional FP-tree for e to find frequentitemsets ending
in de, ce and ae
 Note that be is not considered as b is notin the conditional FP-tree for e.

* For each of them (e.g. de), find the prefix paths from the conditional tree for
e, extract frequent itemsets, generate conditional FP-tree, etc... (recursive)

 Example: e - de - ade ({d, e}, {a, d, e} are found to be frequent)

C) null
a:2 () //Iﬁnun null O
B} _ a:2 ()
C:l (=== ==p({) C:1 //”\\\
l) — c:10) > S
(=) l LAY a:2
d:1 d:1 d:1(r” d:1

Conditional FP-tree for e Prefix paths ending in de Conditional FP-tree for de

Conditional FP-Tree

* Use the the conditional FP-tree for e to find frequentitemsets ending
in de, ce and ae

 Example: e = ce ({c, e} is found to be frequent)

() null

a2 () null
C:l (Omm=aAm===p{) C:1 a:2
l .* — /
————— ») C:1 Ur======9) C:1
d:1 d:1
Conditional FP-tree for e Prefix paths ending in ce

e etc... (ae too, then do the whole thing for b, ... etc)

Result

* Frequent itemsets found (ordered by suffix and order in which they
are found):

Suffix Frequent Itemsets
¢ {e}. {d.e}. {a.d.e}, {c.e}.{a.e}
d {d}, {c.d}. {b.c.d}. {a.c.d}. {b.d}. {a.b.d}. {a.d}
c {c}. {b.c}. {a.b.c}. {a.c}
b {b}. {a.b}
a {a}

Discussion

e Advantages of FP-Growth
e only 2 passes over data-set
* Compresses data-set
* no candidate generation
* much faster than Apriori

* Disadvantages of FP-Growth
* FP-Tree may not fit in memory
* FP-Tree is expensive to build

* Trade-off:takes time to build, but once it is built, frequent itemsets are read off easily.

* Time is wasted (especiallyif support thresholdis high), as the only pruningthat can be
doneis on single items.

e supportcanonlybe calculated oncethe entire data-setisadded to the FP-Tree.

Pattern Evaluation Methods

Misleading Strong Association Rules

- Not all strong association rules are interesting

Basketball | Not basketball | Sum (row)
Cereal 2000 1750 3750
Not cereal | 1000 250 1250
Sum(col.) | 3000 2000 5000

- Shall we target people who play basketball for cereal
ads? play basketball = eat cereal [40%, 66.7%)

- Hint: What 1s the overall probability of people who eat
cereal?
+ 3750/5000 = 75% > 66.7%!

- Confidence measure of a rule could be misleading

Other Measures

* From association to correlation
- Laft
.XZ
* All confidence
* Max confidence
» Kulezynski

» Cosime

Interestingness Measure: Correlations

(Lift)

- play basketball = eat cereal [40%, 66.7%] is misleading
» The overall % of people eating cereal 1s 75% > 66.7%.

- play basketball = not eat cereal [20%, 33.3%] is more accurate, although

with lower support and confidence

- Measure of dependent/correlated events: |ift

Basketball | Not basketball | Sum (row)

P(AU B) P(A N B) Cereal 2000 1750 3750

lift = P(A)P(B) Not cereal | 1000 250 1250

Sum(col.) 3000 2000 5000

lifi(B.C) = 2000/5000 o
3000/5000%*3750/5000
1: independent
lift(B,—=C) = 3000/;((]]32{*5122((]]/5000 =1.33 >1: positively correlated

<1: negatively correlated

Correlation Analysis (Nominal Data)

+ ¥* (chi-square) test

) Z (Observed — Expected)’
£ Expected
* Independency test between two attributes
» The larger the y? value, the more likely the variables are related

» The cells that contribute the most to the y* value are those
whose actual count is very different from the expected count
under independence assumption

 Correlation does not imply causality
- # of hospitals and # of car-theft in a city are correlated

» Both are causally linked to the third variable: population

When Do We Need Chi-Square Test?

»Considering two attributes A and B
* A: a nomunal attribute with ¢ distinct values,
1 P B
* E.g., Grades of Math

* B: a nominal attribute with r distinct values,
bl, nan) b'r

- E.g., Grades of Science

*Question: Are A and B related?

How Can We Run Chi-Square Test?

- Constructing contingency table

» Observed frequency 0;;: number of data objects taking
value b; for attribute B and taking value a; for attribute A

b, 011 012 O1¢
bz 021 022 02¢

b r Orl OTZ = Orc

count(B=b;)xcount(A=aj)

« Calculate expected frequency e; i = -

* Null hypothesis: A and B are independent

- The Pearson y? statistic is computed as:

« X2 =

i=1 2=

(OU eu)

« Follows Chi-squared distribution with degree of
freedomas (r — 1) X (c — 1)

i

(.8

0.2

X7 m Pearson’s cumulative fesi Statistic

Chi-Square Calculation: An Example

Play chess | Not play chess | Sum (row)
Like science fiction 250(90) 200(360) 450
Not like science fiction | 50(210) 1000(840) 1050
Sum(col.) 300 1200 1500

- x* (chi-square) calculation (numbers in parenthesis are expected
counts calculated based on the data distribution in the two
categories)

., (250-90)’ N (50—210) N (200 - 360)> . (1000 —840)>
90 210 360 840

- It shows that like_science_fiction and play_chess are correlated in
the group

 Degree of freedom = (2-1)(2-1) = 1
» P-value = P(X?>507.98) = 0.0
- Reject the null hypothesis => A and B are dependent

X

=507.93

Are lift and y¥* Good Measures of
Correlation?

- Lift and y? are affected by null-transaction

- E.g., number of transactions that do not contain nulk
nor collee

- All_confidence
- all_conf(A,B)=min{P(A | B),P(B| A)}
- Max_confidence
» max_conf (A, B)=max{P(A|B),P(B |A)}
» Kulczynski
+ Kulc(A, B) =5 (P(A|B) + P(B|A))
- Cosine

- cosine(A4,B) = \/P(A|B) x P(B|A)

Sequential Pattern Mining

Sequence Data Base

* A sequence database consists of ordered elements or events

A transaction database A sequence database
TID itemsets SID sequences
10 a, b, d 10 <a(abc)(ac)d(cf)>
20 a, c, d 20 <(ad)c(bc)(ae)>
30 a, d, e 30 <(ef)(ab)(df)cb>
40 b, e, f 40 <eg(af)cbc>

Seguence

* Event / element
* A non-empty set of items, e.g., e=(ab)

* Sequence
* An ordered list of events, e.g.,, s=<e; e, ... >

* Length of a sequence

* The number of instances of items in a sequence
* The length of < (ef) (ab) (df) c b >is 8 (Not 5!)

Subsequence vs. Super sequence

* Giventwo sequencesa=<a; a, ... a, >and B=<b, b, .. b >

* Subsequence
* ais called a subsequence of B, denoted as a& B
* If there existintegers 1< j; <j, <..<j,<msuch thata; & b;;, a, & bjy,...,a, & by,

* Super sequence
* Bisasuper sequence of a

* Example:
* <a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

Sequential Pattern Mining

* Given a set of sequences and support threshold, find the complete
set of frequent subsequences

A sequence : <|(ef)|(ab)||(df) c|b|>
A sequence database

SID sequence An element may contain a set of items.
10 <a(abc)(ac)d(cf)> Items within an element are unordered

and we listthem alphabetically..
20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb> <a(bc)dc> is a subsequence
40 <eg(af)cbc> of <a(abc)(ac)d(cf)>

Given support threshold min_sup =2, <(ab)c> is a sequential pattern

Methods for Sequential Pattern Mining

e Apriori-based Approaches
* GSP — Generalized Sequential Pattern Mining
* SPADE — Sequential PAttern Discovery using Equivalent class

* Pattern-Growth-based Approach
* PrefixSpan

Generalized Sequential
Pattern Mining (GSP)

GSP — Generalized Sequential Pattern Mining

* GSP (Generalized Sequential Patterns)
* Multi-pass algorithm
* Candidate generate and test approach

e Strength
* Pruning candidates by Apriori

e Weakness
e Generate lots of candidates

The Apriori Property of Sequential Patterns

* A basic property: Apriori (Agrawal & Sirkant’94)

* If a sequence S is not frequent,
then none of the super-sequences of S is frequent

* E.g, <hb>isinfrequent so do <hab>and <(ah)b>

Seq. ID Sequence
10 <(bd)cb(ac)> _
20 <(bf)(ce)b(fg)> (;I):?ens sup_pgrt threshold
30 <(ah)(bf)abf> |_SUp =
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>

GSP Algorithm

* Initially, every item in DB is a candidate of length-1

* For each level (i.e., sequences of length-k) do
» Scan database to collect support count for each candidate sequence

* Generate candidate length-(k+1) sequences from length-k frequent
sequences using Apriori

e Repeat until no frequent sequence or no candidate can be found

Finding Length-1 Sequential Patterns

 |Initial candidates:

e <a>, , <c>, <d>, <e>, <>, <g>, <h>

e Scan database once, count support for candidates

Cand

0p)
C
©

min_sup =2

Seq. ID Sequence
10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>

= =_2INW WO W

Generating Length-2 Candidates

<g> <c> <d> <e> <f>
<g> <aa> <ab> <ac> <ad> <ge> <af>
5 1 length_z <ba> <bb> <bc> <bd> <be> <bf>
Candldates <c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <eg> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>
<a> | <c> <d> <e> <> Without Apriori
<g> <(ab)> <(aC)> <(ad)> <(ae)> <(af)> pI'OpGI’ty,
<p> <(bc)> <(bd)> <(be)> <(bf)> 8*8"‘8*7/2:92
<c> <(cd)> <(Ce)> <(cf)> .
- <dop | <arm candidates
<e> <ef> | Apriori prunes
<f> 44.57% candidates

How to Generate Candidate in General

* From L,_, to C,,
* Step 1: Join

* s, and s, can join
if droppingfirst itemin s, isthe same as droppingthe lastitemin s,

* Example:
* <(12)3>join<(2)34>=<(12)34>
e <(12)3>join<(2)(34)> =<(12)(34)>

* Step 2: Pruning
* Check all length k-1 subsequence of a candidate is containedin L,_,

GSP Example

 |Initial candidates:

e <a>, , <c>, <d>, <e>, <>, <g>, <h>

e Scan database once, count support for candidates

Cand

0p)
-
©

<f>

<d>

min_sup =2
Seq. ID Sequence
1 <(cd)(abc)(abf)(acdf)>
2 <(abf)e>
3 <(abf)>
4 <(dgh)(bf)(agh)>

Sl alN A~

GSP Example (Cont'd) min_sup =2

* C,: Length-2 candidates

* 4 supports: <(bf)>

Seq. ID Sequence
1 <(cd)(abc)(abf)(acdf)>
2 <(abf)e>
3 <(abf)>
4 <(dgh)(bf)(agh)>

e 3 supports: <(ab)> <(af)>
e 2 supports: <ba> <da> <db> <df> <fa>

<df><fa><fb><fd><tb><{ad)><(bd}><(bf><{df)>

* L,: Length-2 frequent sequences
e <ba> <da> <db> <df> <fa> <(ab)> <(af)> <(bf)>

Cand | Sup
<a> 4
 4
<f> 4
<d> 2

n_sup =2
GSP Example (Cont’d) mé';j.‘é" Sequence

1 <(cd)(abc)(abf)(acdf)>

. L2 Length-2 frequent sequences 2 <(abf)e>
e <ba><da><db> <df> <fa><(ab)> <(af)> <(bf)> 3 <(abf)>
4

* C;: Length-3 candidates generated by join <(dgh)(bf)(agh)>
e <ba>and<(ab)>=<b(ab)> {1}
e <ba>and <(af)> = <b(af)> {1}
e <da>and<(ab)>=<d(ab)> {1}

. <da>and <(af)> = <d(af)> {1} * L;: Length-3 frequent sequences

* <db>and <(bf)>= <d(bf)> {1, 4} * <dba> <dfa> <(abf)> <(bf)a> <d(bf)>

* <db>and<ba>=<dba>{1, 4} . o
+ <df>and<fa> = <dfa>{1, 4} * C,: Length-4 candidates generated by join
» <fa>and<(ab)>=<f(ab)>{} . _

+ <fas and <(af)> = <f(af)> {1} <d(bf)> and <(bf)a> = <d(bf)a> {1, 4}

e <(ab)>and <(bf)> = <(abf)>{1,2,3} e <(abf)> and <(bf)a> = <(abf)a> {1}

* <(ab)>and<ba>=<(ab)a> {1} ol .

« <(af)> and <fa> = <(af)a) {1} L,: Length-4 frequent sequences

<(bf)>and <fa>= <(bf)a> {1, 4} e <d(bf)a>

Short Summary of GSP

* Benefits from the Apriori pruning

* Reduces search space

e Bottlenecks

* Scans the database multiple times
* Generates a huge set of candidate sequences

The SPADE Algorithm

The SPADE Algorithm

* SPADE — Sequential PAttern Discovery using Equivalent class
* A vertical format sequential pattern mining method

* A sequence database is mapped to a large set of
* ltem: <sequence_ID (SID), event_ID (EID)>

* Mapping from horizontal to vertical format requires only one scan

* Support of k-sequences can be determined by joining the ID lists
of (k-1) sequences

The SPADE Algorithm (Cont’d)

SID

EID

Items

a

abce

ac

d

cf

ad

C

bec

ae

ef

ab

df

[N N N N SN TSN OS] ROV RUGT RSVI UG NG N T N IS I I e

O U | WIN| | O b= WO N =] W DO | O =] W DN+

a b
SID EID SID EID
1 1 1 2
1 2 2 3
1 3 2 2
2 1 3 5
2 4 4 5
3 2
4 3
ab ba
SID EID (a) EID(b) SID EID (b) EID(a)
1 1 2 I 2 3
2 1 3 2 3 4
3 2 5
4 3 5
aba
SID EID (a) EID(b) EID(a)
1 1 2 3
2 1 3 4

Short Summary of SPADE

* Benefits:
* Reduces scans of the sequence database

* Bottlenecks:
* But large set of candidates are still generated

Bottlenecks of Candidate Generate-and-test

* A huge set of candidates generated.

* Especially 2-item candidate sequence.

* Multiple Scans of database in mining.

* The length of each candidate grows by one at each database scan.

* Inefficient for mining long sequential patterns.

* Along pattern grow up from short patterns

* An exponential number of short candidates

PrefixSpan

PrefixSpan

* PrefixSpan — Prefix-Projected Sequential Pattern Growth

e Pattern Growth — does not require candidate generation
* Constructs FP-tree

* Projected databases associated with each frequentitem are
generated from FP-tree

* Builds prefix patterns which it concatenates with suffix patterns
to find frequent patterns

Prefix and Suffix

* <a>, <aa>, <a(ab)> and <a(abc)> are prefixes of sequence <a(abc)(ac)d(cf)>

* Note <a(ac)> is not a prefix of <a(abc)(ac)d(cf)>

* Given the sequence <a(abc)(ac)d(cf)>

Prefix Suffix

<a> <(abc)(ac)d(cf)>
<aa> <(_bc)(ac)d(cf)>
<ab> <(_c)(ac)d(cf)>

(_bc) means: the last element in the prefix together with (bc)
form one element

Prefix-based Projection

* Given a sequence, «, let 5 be a subsequence of a, and ' is be

subsequence of a

* a'is called a projection of a w.r.t. prefix 5, if only and only if

* a' has prefix 5, and

* ' isthe maximum subsequence of a with prefix 8

* Example

e <ad(cf)> is a projection of w.r.t. prefix of
<a(abc)(ac)d(cf)> w.r.t. the prefix <ad>

SID sequence

10 | <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

Projected (Suffix) Database

* The collection of suffixes of projections of sequences in the database
w.r.t. the prefix sequential pattern a

* Example

e <a>-projected database
» <(abc)(ac)d(cf)>
e <(_d)c(bc)(ae)>
* <(_b)(df)cb>

e <(_f)cbc>
* <ab>-projected database SID Sequence
* <(_c)(ac)d(cf)> 10 | <a(abc)(ac)d(cf)>
* <(_c)(ae)> 20 <(ad)c(bc)(ae)>
T <e 30 | <(ef)(ab)(df)cb>
40 <eg(af)cbc>

Mining Sequential Patterns by Prefix Projections

 Step 1: find length-1 sequential patterns
* <a>, , <c>, <d>, <e>, <f>

» Step 2: divide search space. The complete set of sequence patterns
can be partitioned into 6 subsets:

* The ones having prefix <a>;
* The ones having prefix ; o0 e
’ 10 <a(abc)(ac)d(cf)>
| | 20 <(ad)c(bc)(ae)>
. <f>
The ones having prefix <f 30 <(ef)(ab)(df)ch>
* Step 3: mine each subset recursively 40 <eg(af)cbc>

via corresponding projected databases

Finding Sequence Patterns with Prefix <a>

] . . SID sequence
* Only need to consider projections w.r.t. <a> 10 | <a(@bo)ac)d(c
* <a>-projected database: 20 | <(ad)c(bc)(ae)>
<(abc)(ac)d(cf)> <(_d)c(bc)(ae)> <(_b)(df)cb> <(_f)cbc> | 30 | <(ef)ab)(df)cb>
40 <eg(af)cbc>

* Find all the length-2 sequence patterns.
Having prefix <a>: <aa> <ab> <(ab)> <ac> <ad> <af>

* Further partition into 6 subsets

* Having prefix<aa>;

* Having prefix <af>

Why are those 6 subsets?

* By scanning the <a>-projected database once, its locally frequent
items are identified as

e a:2,b:4, b:2,c:4,d:2,andf: 2

* Thus, all the length-2 sequential patterns prefixed with <a> are found,
and they are:
e <aa>: 2,<ab>: 4, <(ab)>: 2, <ac>: 4, <ad>: 2, and <af>:2

Completeness of PrefixSpan
SDB

SID | sequence Length-1 sequential patterns

10 | <a@bo)ac)dch> | <a> , <c>, <d>, <e>, <f>
20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>]]
Having prefix <a> - = Having prefix <c>, ..., <f>
— Having pm
<a>-projected database -projected database
<(abc)(ac)d(cf)> Length-2 sequential
<(_d)c(bc)(ae)> patterns
<(_b)(df)cb> <aa>, <ab>, <(ab)>,
<(_f)cbc> <ac>, <ad>, <af>

Having %(<aa>\|-|awreﬁx <af>

<aa>-proj.db | ... | <af>-proj.db

Short Summary of PrefixSpan

* No candidate sequence needs to be generated
* Projected databases keep shrinking

* Major cost of PrefixSpan: constructing projected databases
e Can be improved by pseudo-projections

Dynamic Time Warping
(DTW)

Dynamic Time Warping (DTW)

- For two sequences that do not line up
well in X-axis, but share roughly similar
shape

* We need to warp the ime axis to make better
alignment

W W

0 10 20 30 40 50 60 0 10 20 30 40

Goal of DTW

Given
- Two sequences (with possible different
lengths):
X ={x1, X2, ..., XN}

Y = {yl'yZ) ""yM}
* A local distance (cost) measure between X,

and Y,: ¢(Xp, Yim)
*Goal:

- Find an alignment between X and Y, such that,
the overall cost 1s mmimized

Represent an Alignment by Warping Path

*An (N,M)-warping path is a sequence p =

(p1, D3, ..., Pr) With p; = (n;, m;), satisfying
the three conditions:

- Boundary condition: p; = (1,1),p; = (N, M)
- Starting from the first point and ending at last point

» Monotonicity condition: 7; and m; are non-
decreasing with [

* Step size condition:

*pi+1 — P €1(0,1),(1,0), (1,1)}
* Move one step right, up, or up-right

Optimal Warping Path

- The total cost given a warping path p
cCp(X,Y) = X c(Xn, Ym,)
- The optimal warping path p*
cCcp(X,Y) =

min{c,(X,Y)|p is an (N, M) — warping path}
- DTW distance between X and Y is defined as:
- the optimal cost ¢+ (X, Y)

Dynamic Programming for DTW

*Dynamic programming:

* Let D(n,m) denote the DTW distance between
X(1,...,n) and Y(1,...,m)
* D 1s called accumulative cost matrix
- Note D(N,M) = DTW(X,Y)
* Recursively calculate D(n,m)
- D(n,m) = min{D(n — 1,m),D(n,m — 1), D(n — 1,m — 1)} + c(xp,)

‘Whenmorn=1
DM, 1) = Xpcqm (X, 1) Time complexity: O(MN)
*D(1,m) = Xp—1.m c(x1, Yi);

DTW Example

* Sequencel1l:112320
* Sequence?2:0112321

c c(x,y) = (x —y)*

1 7 7 3 6 2 2
2 7 7 2 2 1 5
3 6 6 2 1 2 11
2 2 2 1 2 2 6
1 1 1 2 6 7 3
1 1 1 2 6 7 8
0 1 2 6 15 19 19
1 1 2 3 2 0

